Commuting Operators
Class 18 Fall.pdf
Review from 2023-10-27 Quantum Physics Lecture 17
Hermitian Operator
Hilbert Space
Eigenvalue
Today:
The ordering of Hermitian Operator s is important, and therefore they are not commutative. The commutator of two operators is defined as [ A ^ , b ^ ] = A ^ B ^ − B ^ A ^ .
For example, (class example 1)
A free particle with H = 2 m p 2 , determine [ p ^ , H ^ ] :
p ^ = i ℏ d x d
H ^ = − 2 m ℏ ∂ x 2 ∂ 2
[ p ^ , H ^ ] = 2 m 1 [ p ^ , p ^ 2 ] = 0
A simple harmonic oscillator with H = …
[ p ^ , H ^ ] = [ p ^ , 2 m p ^ 2 + 2 1 k 0 x ^ 2 ] = 2 1 k 0 [ p ^ , x ^ 2 ]
[ p ^ , H ^ ] = − i ℏ k 0 x
Why are commutation relations important?
We need hermitian operators to have the same eigenfunctions.
Commuting operators have the same eigenfunctions
Non commuting operations have uncertainty.
In class assignment 2
Given d t d < A > = ℏ i ∫ d x [( H ˉ Ψ ) ∗ A ^ ψ − Ψ ∗ A ^ H ^ Ψ ] show that d t d < A > = ℏ i ∫ Ψ ∗ [ H ^ , A ^ ] Ψ d x ≡ ℏ i < [ H ^ , A ^ ] > d x
(use hermitian property of H ^ )
H † = H
d t d < A > = ℏ i ∫ d x [( H ˉ Ψ ) ∗ A ^ ψ − Ψ ∗ A ^ H ^ Ψ ]
ℏ i ∫ ( H ^ Ψ ) ∗ ( A ^ Ψ ) − Ψ ∗ A ^ H ^ Ψ d x = ℏ i ∫ [ Ψ ∗ H † A ^ Ψ − Ψ ∗ A ^ H ^ Ψ ] d x
= ℏ i ∫ [ Ψ ∗ H ^ ( A ^ Ψ ) − Ψ ∗ A ^ H ^ Ψ ] d x
= ℏ i ∫ Ψ ∗ [ H ^ , A ^ ] Ψ d x = ℏ i < [ H ^ , A ^ ] >
In class assignment 3
For Hamiltonian H = 2 m p 2 + V x show that d t d < p > =< − ∂ x ∂ V >
d t d < A > = ℏ i < [ H ^ , A ^ ] >
d t d < p ^ > = ℏ i < [ H ^ , p ^ ] >
= ℏ i < 2 m p ^ 2 + V ( x ) , p ^ >= ℏ i < [ V ( x ) , p ^ ] >
[ V ( x ) , p ^ ] φ ( x ) = i ℏ [ V ( x ) ∂ x ∂ φ − ∂ x ∂ V ( x ) φ ( x ) ]
= i ℏ [ ∂ x V ( x ) ∂ φ − φ ( x ) ∂ x ∂ V ( x ) − V ( x ) ∂ x ∂ φ ] = − i ℏ ∂ x ∂ V ( x ) φ ( x )
d t d < p > = ℏ i < − ℏ i < − i ℏ ∂ x ∂ V ( x ) >=< − ∂ x ∂ V ( x ) >
d t d p = − ∂ x ∂ V ( x ) = F
In class assignment 4
For Hamiltonian H = 2 m p 2 + V x show that d t d < x > = m < p >
d t d < x > = ℏ i < [ H ^ , x ^ ] ≥ d t d < x >
= ℏ i < [ 2 m p 2 + V ( x ) , x ^ ] >= 2 m ℏ i < [ p ^ 2 , x ^ ] >= − 2 mh i < [ x ^ , p ^ 2 ] >
[ x ^ , p ^ 2 ] φ = [ x ( i ℏ ∂ x ∂ ) 2 − ( i ℏ ∂ x ∂ ) x 2 ] φ = − ℏ 2 [ x ∂ x 2 ∂ 2 φ − ∂ x 2 ∂ 2 ( x φ ) ]
= − ℏ 2 [ x ∂ x 2 ∂ 2 φ − x ∂ x 2 ∂ 2 φ − ∂ x ∂ φ − ∂ x ∂ φ ] = 2 ℏ 2 ∂ x ∂ φ = 2 i ℏ p ^ φ
d t d < x > = − 2 mh i < 2 i ℏ p ^ >= m < p ^ >
Exam 2 contents:
Everything until 3d problems. 8-18