23.1 Determine the most probable r in the ground state H-atom.
Probability density and unknown R, solve for R
Take the derivative, set to 0
P(r)=r2[2(a01)3/2e−r/a0][2(a01)3/2e−r/a0]
drdP(r)=a038re−a02r−a048r2e−a02r
with zeros at r=0,a0. Therefore the most probable R is a0
23.2 What is the expectation value < r > for the ground state of H-atom?
R1,0(r)=2(a01)3/2e−r/a0
<r> =4(a01)2∫r3e(−2/a0)r dr=[−2a0r3e−2r/a0+23a0e−2r/a0(−2a0r2−2a02r−4a03)]0∞
4(a01)3[83a04]
23a0
23.3 At t=0 a hydrogen atom is in a mixed state given
Ψ(r,θ,ϕ,t=0)=21Ψ1,0,0+21Ψ(2,1,1)
(a) Determine the wave function at t later.
Ψ(r,θ,ϕ,t)=21Ψ1,0,0e−iEnt/ℏ+21Ψ(2,1,1)e−iEnt/ℏ
(b) Determine expectation value of energy < 𝐸 >.
<E>=∫(21Ψ1,0,0e−iEnt/ℏ+21Ψ(2,1,1)e−iEnt/ℏ)H^(21Ψ1,0,0e−iEnt/ℏ+21Ψ(2,1,1)e−iEnt/ℏ)
2E1+E2
23.4 At t=0 a hydrogen atom is in a mixed state given:
Ψ(r,θ,ϕ,t)=21Ψ1,0,0e−iEnt/ℏ+21Ψ(2,1,1)e−iEnt/ℏ
L2=Lx2+Ly2+Lz2 , Lz=xPy−yPx
Ψ(r,θ,φ,t)=21e−iE1t/ℏψ(1,0,0)+21e−iE1t/ℏψ(2,1,1)
<L2> =21⋅0ℏ2+21(2ℏ2)=ℏ2
<Lz>=21(0ℏ)+21(ℏ)=2ℏ