Lagrangian and Euler-Lagrange Equation
Reduced Mass Equation
Centrifugal Potential
Effective Potential
Orbit
Continuous Distribution Inertia Tensor
matrices
Eigenfrequency and Eigenvector relations
formula
formula
position of strings formula
Aug 12, 20251 min read
Lagrangian and Euler-Lagrange Equation
L=T−U dtd∂q˙i∂L−∂qi∂L=0Reduced Mass Equation
m1+m2m1m2=μCentrifugal Potential
Ucf=2μr2l2Effective Potential
Ueff=U+UcfOrbit
∂θ2∂2u+u=−l2μu21F(u1)Continuous Distribution Inertia Tensor
Iij=∫ρ(δijk∑xk2−xixj)dVAjk matrices
Ajk=∂qj∂qk∂2uEigenfrequency and Eigenvector relations
det[Aˉ−ω2mˉ]=0 [Aˉ−ω2mˉ]⋅v=0μr formula
μr=L20∫Lq(x,0)sin(Lrπx)dxνr formula
νr=−ωrL20∫Lq˙(x,0)sin(Lrπx)dxposition of strings formula
q(x,t)=r=1∑∞sin(Lrπx)(μrcos(ωrt)−νrsin(ωrt))