Physics 1250

Inductance
EMF and Current in Circuits

Magnetic Field Energy



Inductance

e Last class:

e Faraday’s Law — a time-changing magnetic flux induces an
emf in a region of space, and can also induce current in a
conductor located where the emf is occurring.
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* Inductance is the influence or effect that changing
current or field exerts on a device by its own doing
(self-inductance) or on other devices (mutual
inductance).

* An inductor is a device that functions in a circuit to mitigate
rapid changes in current and to store magnetic field energy.



Inductance (2)

* Magnetic flux from a current i will generally have the form
®; = Gi, where G is a factor that incorporates the geometry of a
device or devices magnetically linked in some way (sometimes
referred to as “flux linkage”).

* ( motivates the idea that there is a quantity known as inductance,
which associates physical and geometric aspects of a conducting
device with its magnetic properties.

 Self-inductance L of a device is defined by the relation
by = Li,

® 5 = total magnetic flux contained within the current-carrying region of
the device.

* Mutual inductance M relates the flux through one device to the

current in another.

d, = Mi,



Example: Self-Inductance of a Solenoid

e Calculate the self-inductance (often just called the
inductance) L of an ideal solenoid of N turns, length [, and
radius 75 :
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Dp 100p = flux through a single turn, and
Apop = 1" = area of a turn.

* Lisindependent of current or magnetic field of the solenoid.

* Sl unit of inductance is the Henry (H)*:
1H=1Wb/A=1Tm?A.

*ask for a Albany-Troy story



Example: Self-Inductance of a Solenoid (2)

* To get a sense of a typical inductance value, an
inductor in an electrical circuit might have 1000
turns, a radius of 0.50 cm, and a length of 1.0 cm:

n(4n><10_7TTm)(1000

)? ) .
T (0.0050 m)2 = 9.9 x 1073 H.

L =




Activity: Self-Inductance of a coaxial cable

* Determine the inductance of a one meter segment of a long
straight coaxial cable. (See activity instructions)

e The inner wire diameter d is 0.80 mm. The diameter D of the
inside surface of the outer conductor is 5.0 mm. The insulator
IS non-magnetic.



Inductance and EMF

 Differentiating the inductance — current
relation gives

ddpg d . di
s _ 4 iy =%
dt dt dt
) ) , ) Self-inductance: If the current i in the coil is
Combined with Fa raday s law, Y|EIdS: changing, the changing flux through the coil
di
E:L — _L - >
dt

 When current changes in an inductor, an
emf is induced that opposes the imposed
change (Lenz’s law).

* Physical consequence: when current is
turned on or off in a circuit (e.g., closing a
switch), a “back emf” &, is generated in the
inductor that opposes that change. If the
change in current is sudden, the back emf
can be quite large in magnitude!




Lecture Question

* An ideal solenoid has length [ = 1.5 cm,
cross-sectional area Ay, = 0.78 cm?, and
number of turns N = 2500. Attimet =0.0s |
a steady current iy = 2.0 A flows through the (A
solenoid. Suppose the current were to be 2.0
cutoff as shown in the graph at right. (This is
consistent with pulling a power supply plug
from the wall.) The magnitude of the emf
induced in the inductor is closest to:

A. 1.2x10°V.
B. 1.3x103V. -

0 50  t(ps)
C. 21V
4
[ D. 1.6 x107V. ] L = mugnrf1=0.041 H
E. 55V

EMF = e
5x 106

L ot 0.041
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dt



Inductors as Surge Protectors

e Because they oppose sudden changes in current, inductors can be
used as surge protectors in electrical circuits and systems.

e Large inductors are used as surge protectors against lightning strikes
for outdoor power transmission systems.




Calculus with an Inductor

* Because emf in an inductor is proportional to the time derivative of
the current, can use this to perform basic calculus with inductors in

circuits.

 Example: if the current in a circuit is a triangle wave, how does emf
across the inductor behave?

i(t) /\

N



Change in Potential Across an Inductor

Last class: Faraday’s law relates change in —p

magnetic flux to the line-integral of a non- i
conservative electric field E,,.:

¢ E _) _4d%p . Variable | ~ '
dt source - g -
: : ST f emf 7 N
 Because the magnetlc flux change in a circuitis |~ " '
é

confined within the inductor region, E,,. is
also confined between the terminals of the
inductor (typically labeled points a and b in

your text).

* Because Enc # 0 is only between a and b, integrating the line integral in
Faraday’s law clockwise around the loop gives
di

[PEp-di=-28-_%

dt dat ’
(used the inductance — flux definition presented earlier).



Change in Potential Across an Inductor (2)

* |deal inductors are made of conductors with —

effectively zero resistance. To have finite current i
density in this type of inductor, the total electric

field that acts on charges inside the conductor |

must be essentially zero: Variable | ~ '
_ _ _ _ . source = G .
Eipe=E . +E =0 = E;=—E;. RIS 0

* .. Conservative electric field EC in the inductor is
opposite in direction and has same magnitude

e

Q000 ———_

as the induced non-conservative field, E . -
L

[

* Electric potential is defined in terms of conservative electric fields; follows
that potential difference between inductor leads is

b 3 b H di
Vi) -V(@=~[E -dl= [ Ey -dl= -L—
V(@) -V(b) =L .



Inductors in Circuits

e Circuit shown: box enables us to -
control the current i in the circuit. .

e Potential difference between the

terminals of the inductor L is: Variable | ~ ' ~
o source — g =
Vop =V(a) —V(b) = LE : of emf A

* Consider inductor response for
different situations.




Inductors in Circuits (2)

l
a E b .
e AMAAM——e— V, = iR >0
+ R e

* For resistors in circuits, flow shown above is always a drop in
potential across a resistor.

e Result for an inductor in a circuit will depend on how the current is
changing with time.




Inductors in Circuits (3)

iconstant' di/dt = 0

di
—o—fUZWG\—O— =
Vap = Ly =

E=0

L=
A

 Steady (i.e., constant) current: no emf and no potential difference
across the inductor.



Inductors in Circuits (4)

i increasing: di/dt > 0
5 $ = ab dt

e Current increasing in the direction of the current: induced back-emf
in circuit opposes increase of the current in sense shown.

» For this case, emf due to Enc in the inductor is directed from terminal
b to terminal a.

» Conservative electric field EC in the inductor is directed oppositely,
from terminal a to terminal b.

» Conservative electric fields point from high electric potential to low
electric potential: follows that V(a) > V(b) =V, > 0.



Inductors in Circuits (5)

i decreasing: di/dt < 0

b dl
Vab:LE<O

* Current decreasing with time in the direction of the current.

» Emf of the inductor tries to replenish (i.e., add to) diminishing current
in the sense shown, going from a to b. .. E, for this case goes from a
to b.

» Conservative electric field fc is oppositely directed, from b to a.

» Follows that V(b) > V(a) for this case. That is, V,;, < 0.



Inductors in Circuits — Remembering the emf
sign
* It can help to think of the potential induced by the

changing current in the inductor as the potential
necessary to maintain the current in the rest of the

circuit.

* If current in the inductor is decreasing, the inductor
will try to keep the current going in the rest of the

circuit like a battery.
i decreasing: di/dt < 0

R b ]
a xX7C7CK\ dl I
eI\ V,, = L < 0 |
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Magnetic Energy Stored in Inductors

* When inductor voltage V,;, # 0 and current i # 0, power can be
supplied to an inductor. Amount of power will be

di
Pr=1iV,, =iL—.
L ab dt

* Energy stored in the inductor as magnetic energy found by integrating
supplied power over time:

. di A
Ug = [ P dt = flLd—;dtZLfOlldl =~ Li?

» Unlike a resistor, where energy is dissipated (i.e., lost from system),

power P; to the inductor is stored as energy in the magnetic field of the
inductor.

» If current in the circuit i — 0, stored magnetic energy is returned to the
circuit.




Energy Density of the Magnetic Field

e Similar to electrostatics, define the energy density of a magnetic field
as

Up

Up = , Where v = volume of a system.
B 1%

* For a solenoid of length [ and cylindrical cross-section area 4.y,
v = Ajpopl = 11, B = pgni, and L = muyn®rdl. Follows that

1 %) 2
SLt 1 (uorrén?i? 1 . 1 B
Up :z_:_(/io 52 ) =—,u0(nl)2 =Zup [—) ,
BZ
= Ug = '2 1o .

* Although derived for a solenoid, expression found for ug is
independent of any device. Above relation is true for all situations.



Energy Density of the Magnetic Field (2)

* Energy density ug can be considered an intrinsic property of a

magnetic field. Similar to that for the energy density of the electric

. 1
field, ug = eoE?.

* Sl units of energy density ug are # :

units are the same as for pressure.

- : N
This is equivalent to — . These
m

* Energy densities ug and ug naturally appear in the discussion of
wave energy and momentum of electromagnetic waves (light).



Mutual Inductance

* |Inductance effects not limited to emf effect of a device on itself. Inductance
can also occur between different devices. In those cases we refer to there
being a mutual inductance.

* Consider two separate, yet nearby coils: magnetic field of one can create a
magnetic flux in the other (and vice-versa). Change of the magnetic field in
one (by a change in its current) can induce a change in the magnetic flux of
the other = one coil induces emf in the other.
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Mutual Inductance (2)

Consider two neighboring coils of wire. If
current in coil 1 changes, it induces an emfin
coil 2, and vice versa.

Proportionality constant for this pair of coils is
the mutual inductance, M.

Define mutual inductance of coil 2 with respect
to coil 1 as

Being inductances, mutual inductances M, and
M, are independent of magnetic field and
current in either coil. They depend only on the
geometry of the coils and physical constants.

Coil 1
N, turns /~

\ Coil 2
/N, turns




Mutual Inductance (3)

* From their definitions, it follows that coil emfs are

ddp, di,
& =—N = -M,, —=

ddg, diq
& =—N = — —

* With a little more detail and math than we will be using in PHYS 1200,
one can show from general considerations that there exists a
reciprocity relation, such that, for general loop circuits 1 and 2,

My, =My =M,

and from which it follows for the magnetically linked coils,

&=-M22
dt
& =-M

dt
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