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Inductance 

EMF and Current in Circuits 

Magnetic Field Energy 
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Inductance

• Last class: 

• Faraday’s Law – a time-changing magnetic flux induces an 
emf in a region of space, and can also induce current in a 
conductor located where the emf is occurring. 

ර 𝐸 ∙ 𝑑 Ԧ𝑠 = −
𝜕Φ𝐵

𝜕𝑡

• Inductance is the influence or effect that changing 
current or field exerts on a device by its own doing 
(self-inductance) or on other devices (mutual 
inductance).

• An inductor is a device that functions in a circuit to mitigate 
rapid changes in current and to store magnetic field energy.
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Inductance (2)
• Magnetic flux from a current 𝑖 will generally have the form 

Φ𝐵 = 𝐺𝑖, where 𝐺 is a factor that incorporates the geometry of a 
device or devices magnetically linked in some way (sometimes 
referred to as “flux linkage”).

• 𝐺 motivates the idea that there is a quantity known as inductance, 
which associates physical and geometric aspects of a conducting 
device with its magnetic properties.

• Self-inductance 𝐿 of a device is defined by the relation

                                                    Φ𝐵 = 𝐿𝑖  ,  

    Φ𝐵 = total magnetic flux contained within the current-carrying region of 
the device.

• Mutual inductance M relates the flux through one device to the 

current in another.

 Φ1 = 𝑀𝑖2 3



Example: Self-Inductance of a Solenoid

• Calculate the self-inductance (often just called the 
inductance) 𝐿 of an ideal solenoid of 𝑁 turns, length 𝑙, and 
radius 𝑟𝑠 :

𝐿𝑜𝑛𝑒𝑡𝑢𝑟𝑛 =
Φ𝐵,𝑜𝑛𝑒𝑡𝑢𝑟𝑛

𝑖
=

Φ𝐵,𝑡𝑢𝑟𝑛 

𝑖
=

𝐵𝐴𝑡𝑢𝑟𝑛

𝑖

𝐿𝑁𝑡𝑢𝑟𝑛𝑠 =
𝑁 𝜇𝑜𝑛𝑖 𝐴𝑙𝑜𝑜𝑝

𝑖

  ⇒  𝐿𝑐𝑢𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 = 𝜇0𝑁
𝑁

𝑙
𝐴𝑙𝑜𝑜𝑝 =

𝜇0𝑁2𝜋𝑟𝑠
2

𝑙
= 𝜋𝜇0𝑛2𝑟𝑠

2𝑙 ,

     Φ𝐵,𝑙𝑜𝑜𝑝 = flux through a single turn, and 

     𝐴𝑙𝑜𝑜𝑝 = 𝜋𝑟𝑠
2 = area of a turn.

• 𝐿 is independent of current or magnetic field of the solenoid. 

• SI unit of inductance is the Henry (H)*: 

    1 H = 1 Wb/A = 1 T m2/A .

    *ask for a Albany-Troy story
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Example: Self-Inductance of a Solenoid (2)

• To get a sense of a typical inductance value, an 
inductor in an electrical circuit might have 1000 
turns, a radius of 0.50 cm, and a length of 1.0 cm:

 𝐿 =
𝜋 4𝜋×10−7T m

A
1000 2

(0.01 m)
0.0050 m 2 = 9.9 × 10−3 H.
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Activity: Self-Inductance of a coaxial cable

• Determine the inductance of a one meter segment of a  long 
straight coaxial cable.  (See activity instructions)

• The inner wire diameter d is 0.80 mm. The diameter D of the 
inside surface of the outer conductor is 5.0 mm. The insulator 
is non-magnetic.
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Inductance and EMF

• Differentiating the inductance – current 
relation gives

𝑑Φ𝐵

𝑑𝑡
=

𝑑

𝑑𝑡
𝐿𝑖 = 𝐿

𝑑𝑖

𝑑𝑡
 , 

    Combined with Faraday’s law, yields:

                            EL = −𝐿
𝑑𝑖

𝑑𝑡
  .

• When current changes in an inductor, an 
emf is induced that opposes the imposed 
change (Lenz’s law).

• Physical consequence: when current is 
turned on or off in a circuit (e.g., closing a 
switch), a “back emf” EL is generated in the 
inductor that opposes that change. If the 
change in current is sudden, the back emf 
can be quite large in magnitude!
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Lecture Question

• An ideal solenoid has length 𝑙 = 1.5 cm, 
cross-sectional area 𝐴𝑙𝑜𝑜𝑝 = 0.78 cm2, and 
number of turns 𝑁 = 2500. At time 𝑡 = 0.0 s 
a steady current 𝑖0 = 2.0 A flows through the 
solenoid. Suppose the current were to be 
cutoff as shown in the graph at right. (This is 
consistent with pulling a power supply plug 
from the wall.) The magnitude of the emf 
induced in the inductor is closest to:

A.  1.2 × 105 V.

B.  1.3 × 103 V.

C.   21 V.

D.  1.6 × 104 V.

E.   55 V.
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𝑡(μs)

𝑖(A)

0 5.0

2.0

𝐿 = 𝜋𝜇0𝑛2𝑟𝑠
2𝑙=0.041 H

𝐸𝑀𝐹 = −𝐿
𝜕𝑖

𝑑𝑡
= 0.041 ∗

2.0

5 × 10−6



Inductors as Surge Protectors

• Because they oppose sudden changes in current, inductors can be 
used as surge protectors in electrical circuits and systems.

• Large inductors are used as surge protectors against lightning strikes 
for outdoor power transmission systems.
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Calculus with an Inductor

• Because emf in an inductor is proportional to the time derivative of 
the current, can use this to perform basic calculus with inductors in 
circuits.

• Example: if the current in a circuit is a triangle wave, how does emf 
across the inductor behave?
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Change in Potential Across an Inductor

• Last class: Faraday’s law relates change in 
magnetic flux to the line-integral of a non-
conservative electric field 𝑬𝑛𝑐:

ׯ                          𝑬
𝑛𝑐

⋅ 𝑑Ԧ𝒍 = −
𝑑Φ𝐵

𝑑𝑡
 .

• Because the magnetic flux change in a circuit is 
confined within the inductor region, 𝑬𝑛𝑐 is 
also confined between the terminals of the 
inductor (typically labeled points 𝑎 and 𝑏 in 
your text).
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• Because 𝑬𝑛𝑐 ≠ 0 is only between 𝑎 and 𝑏, integrating the line integral in 
Faraday’s law clockwise around the loop gives

𝑎                                         

𝑏
𝑬𝑛𝑐 ⋅ 𝑑Ԧ𝒍 = −

𝑑Φ𝐵

𝑑𝑡
= −𝐿

𝑑𝑖

𝑑𝑡
  ,

  (used the inductance – flux definition presented earlier).



Change in Potential Across an Inductor (2)

• Ideal inductors are made of conductors with 
effectively zero resistance. To have finite current 
density in this type of inductor, the total electric 
field that acts on charges inside the conductor 
must be essentially zero:

𝑬𝑡𝑜𝑡 = 𝑬𝑐 + 𝑬𝑛𝑐 = 0      ⇒  𝑬𝑐 = −𝑬𝑛𝑐 . 

• ∴ Conservative electric field 𝑬𝑐 in the inductor is 
opposite in direction and has same magnitude 
as the induced non-conservative field, 𝑬𝑛𝑐.
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• Electric potential is defined in terms of conservative electric fields; follows 
that potential difference between inductor leads is

                           𝑉 𝑏 − 𝑉 𝑎 = − 𝑎

𝑏
𝑬

𝑐
⋅ 𝑑Ԧ𝒍 = 𝑎

𝑏
𝑬𝑛𝑐 ⋅ 𝑑Ԧ𝒍 = −𝐿

𝑑𝑖

𝑑𝑡
     

                                                 ⇒ 𝑉 𝑎 − 𝑉 𝑏 = 𝐿
𝑑𝑖

𝑑𝑡
  .



Inductors in Circuits
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• Circuit shown: box enables us to 
control the current 𝑖 in the circuit.

• Potential difference between the 
terminals of the inductor 𝐿 is:

𝑉𝑎𝑏 = 𝑉(𝑎) − 𝑉(𝑏) = 𝐿
𝑑𝑖

𝑑𝑡
.

• Consider inductor response for 
different situations.



Inductors in Circuits (2)
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• For resistors in circuits, flow shown above is always a drop in 
potential across a resistor.

• Result for an inductor in a circuit will depend on how the current is 
changing with time.



Inductors in Circuits (3)
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• Steady (i.e., constant) current: no emf and no potential difference 
across the inductor. 



Inductors in Circuits (4)

16

• Current increasing in the direction of the current: induced back-emf
in circuit opposes increase of the current in sense shown. 

➢For this case, emf due to 𝑬𝑛𝑐 in the inductor is directed from terminal 
𝑏 to terminal 𝑎.

➢Conservative electric field 𝑬𝑐 in the inductor is directed oppositely, 
from terminal 𝑎 to terminal 𝑏.

➢Conservative electric fields point from high electric potential to low 
electric potential: follows that 𝑉 𝑎 > 𝑉 𝑏 ⇒ 𝑉𝑎𝑏 > 0.



Inductors in Circuits (5)
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• Current decreasing with time in the direction of the current.
➢Emf of the inductor tries to replenish (i.e., add to) diminishing current 

in the sense shown, going from 𝑎 to 𝑏.  𝑬𝑛𝑐 for this case goes from 𝑎
to 𝑏.

➢Conservative electric field 𝑬𝑐 is oppositely directed, from 𝑏 to 𝑎.

➢Follows that 𝑉 𝑏 > 𝑉(𝑎) for this case. That is, 𝑉𝑎𝑏 < 0.



Inductors in Circuits – Remembering the emf 
sign 

• It can help to think of the potential induced by the 
changing current in the inductor as the potential 
necessary to maintain the current in the rest of the 
circuit.

• If current in the inductor is decreasing, the inductor 
will try to keep the current going in the rest of the 
circuit like a battery.
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Magnetic Energy Stored in Inductors
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• When inductor voltage 𝑉𝑎𝑏 ≠ 0 and current 𝑖 ≠ 0, power can be 
supplied to an inductor. Amount of power will be

𝑃𝐿 = 𝑖 𝑉𝑎𝑏 = 𝑖𝐿
𝑑𝑖

𝑑𝑡
.

• Energy stored in the inductor as magnetic energy found by integrating 
supplied power over time:

𝑈𝐵 =  𝑃𝐿 𝑑𝑡 =   𝑖𝐿
𝑑𝑖

𝑑𝑡
𝑑𝑡 = 𝐿 0

𝑖
𝑖′𝑑𝑖′ =

1

2
 𝐿𝑖2 .

➢Unlike a resistor, where energy is dissipated (i.e., lost from system), 
power 𝑃𝐿 to the inductor is stored as energy in the magnetic field of the 
inductor.

➢ If current in the circuit 𝑖 → 0, stored magnetic energy is returned to the 
circuit.



Energy Density of the Magnetic Field
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• Similar to electrostatics, define the energy density of a magnetic field 
as

𝑢𝐵 ≡
𝑈𝐵

𝑣
,  where 𝑣 = volume of a system.

• For a solenoid of length 𝑙 and cylindrical cross-section area 𝐴𝑙𝑜𝑜𝑝, 
𝑣 = 𝐴𝑙𝑜𝑜𝑝𝑙 = 𝜋𝑟𝑠

2𝑙, 𝐵 = 𝜇0𝑛𝑖, and 𝐿 = 𝜋𝜇0𝑛2𝑟𝑠
2𝑙.  Follows that

𝑢𝐵 =
1

2
𝐿𝑖2

𝐴𝑙𝑜𝑜𝑝𝑙
=

1

2

(𝜇0𝜋𝑟𝑠
2𝑛2𝑙)𝑖2

𝜋𝑟𝑠
2𝑙

=
1

2
𝜇0 𝑛𝑖 2 =

1

2
𝜇0

𝐵

𝜇0

2

,

⇒  𝑢𝐵 =
𝐵2

2 𝜇0
.

• Although derived for a solenoid, expression found for 𝑢𝐵 is 
independent of any device. Above relation is true for all situations.



Energy Density of the Magnetic Field (2)
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• Energy density 𝑢𝐵 can be considered an intrinsic property of a 
magnetic field. Similar to that for the energy density of the electric 

field, 𝑢𝐸 =
1

2
 𝜖0𝐸2.

• SI units of energy density 𝑢𝐵 are 
J

m3 . This is equivalent to 
N

m2 . These 

units are the same as for pressure.

• Energy densities 𝑢𝐵 and 𝑢𝐸 naturally appear in the discussion of 
wave energy and momentum of electromagnetic waves (light).



Mutual Inductance

22

• Inductance effects not limited to emf effect of a device on itself. Inductance 
can also occur between different devices. In those cases we refer to there 
being a mutual inductance.

• Consider two separate, yet nearby coils: magnetic field of one can create a 
magnetic flux in the other (and vice-versa). Change of the magnetic field in 
one (by a change in its current) can induce a change in the magnetic flux of 
the other ⇒ one coil induces emf in the other.



Mutual Inductance (2)
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• Consider two neighboring coils of wire. If 
current in coil 1 changes, it induces an emf in 
coil 2, and vice versa.

• Proportionality constant for this pair of coils is 
the mutual inductance, 𝑀.

• Define mutual inductance of coil 2 with respect 
to coil 1 as 

𝑀21 =
𝑁2Φ𝐵2

𝑖1
,

and that of coil 1 with respect to coil 2 as

𝑀12 =
𝑁1Φ𝐵1

𝑖2
.

• Being inductances, mutual inductances 𝑀21 and 
𝑀12 are independent of magnetic field and 
current in either coil. They depend only on the 
geometry of the coils and physical constants.



Mutual Inductance (3)
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• From their definitions, it follows that coil emfs are

E1 = −𝑁1
𝑑Φ𝐵1

𝑑𝑡
= −𝑀12

𝑑𝑖2

𝑑𝑡
,

E2 = −𝑁2
𝑑Φ𝐵2

𝑑𝑡
= −𝑀21

𝑑𝑖1

𝑑𝑡
.

• With a little more detail and math than we will be using in PHYS 1200, 
one can show from general considerations that there exists a 
reciprocity relation, such that, for general loop circuits 1 and 2,

𝑀12 = 𝑀21 = 𝑀 , 

and from which it follows for the magnetically linked coils,

E1 = −𝑀
𝑑𝑖2

𝑑𝑡
,

E2 = −𝑀
𝑑𝑖1

𝑑𝑡
.
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